Chapter 6

The Transport Layer

The Transport Service

Services Provided to the Upper Layers
Transport Service Primitives
Berkeley Sockets

An Example of Socket Programming:
— An Internet File Server

Services Provided to the Upper Layers

Host 1 Host 2

Application Application

(or session) Application/transport (or session)

layer fransport | interface layer
+ address |/~
TPDU ‘ '
Transport o .| Transport
entity T Transport entity
protocol l
Network — R
address Transport/network

interface

Network layer Network layer

The network, transport, and application layers.

Transport Service Primitives

Primitive Packet sent Meaning
LISTEN (none) Block until some process tries to connect
CONNECT CONNECTION REQ. Actively attempt to establish a connection
SEND DATA Send information
RECEIVE (none) Block until a DATA packet arrives
DISCONNECT | DISCONNECTION REQ. | This side wants to release the connection

The primitives for a simple transport service.

Transport Service Primitives (2)

Frame Packet TPDU
header header header
/ / #
’ a -

TPDU payload

Y

Packet payload

The nesting of TPDUs, packets, and frames.

Y

Frame payload

Transport Service Primitives (3)

Connection request Connect primitive
f__?:lzlgl_J_r_e_c_eLv_e_d_____ IDLE executed
I]
1
¥
PASSIVE ACTIVE
ESTABLISHMENT ESTABLISHMENT
PENDING PENDING
Connect primitive Connection accepted J
(. e _x_e_cyze_qb ESTABLISHED TPDU received
i
Disconnection '} Disconnect
request TPDU 1 imiti
PASSIVE T sl | iy ! ACTIVE
DISCONNECT |a=s=sansmmmmmse J - DISCONNECT
PENDING PENDING
T
1
1
1
1
l J
e il = IDLE - ,
Disconnect Disconnection request
primitive executed TPDU received

A state diagram for a simple connection management scheme.
Transitions labeled in italics are caused by packet arrivals. The

solid lines show the client's state sequence. The dashed lines show
the server's state sequence.

Berkeley Sockets

Primitive Meaning
SOCKET Create a new communication end point
BIND Attach a local address to a socket
LISTEN Announce willingness to accept connections; give queue size
ACCEPT Block the caller until a connection attempt arrives
CONNECT | Actively attempt to establish a connection
SEND Send some data over the connection
RECEIVE Receive some data from the connection
CLOSE Release the connection

The socket primitives for TCP.

Socket
Programming
Example:
Internet File
Server

Client code using
sockets.

/* This page contains a client program that can request a file from the server program
* on the next page. The server responds by sending the whole file.
*/

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

#define SERVER_PORT 12345 /* arbitrary, but client & server must agree */
#define BUF_SIZE 4096 /* block transfer size */

int main(int argc, char **argv)

{

int c, s, bytes;

char buf[BUF_SIZE]; /* buffer for incoming file */
struct hostent *h; /* info about server */
struct sockaddr_in channel; /* holds IP address */

if (argc != 3) fatal("Usage: client server-name file-name");
h = gethostbyname(argv[1]); /* look up host’s IP address */
if ('h) fatal("gethostbyname failed");

s = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);

if (s <0) fatal("socket");

memset(&channel, 0, sizeof(channel));

channel.sin_family= AF_INET;

memcpy(&channel.sin addr.s addr, h->h addr, h->h length);
channel.sin_port= htons(SERVER_PORT);

¢ = connecit(s, (struct sockaddr *) &channel, sizeof(channel));
if (c < 0) fatal("connect failed");

/* Connection is now established. Send file name including 0 byte at end. */
write(s, argv[2], strlen(argv[2])+1);

/* Go get the file and write it to standard output. */

while (1) {
bytes = read(s, buf, BUF_SIZE); /* read from socket */
if (bytes <= 0) exit(0); /* check for end of file */
write(1, buf, bytes); /* write to standard output */

}
}

fatal(char *string)

{
printf("%s\n", string);

exit(1);
1

Socket
Programming
Example:
Internet File

Server (2)

Client code using
sockets.

#include <sys/types.h> /* This is the server code */
#include <sys/fcntl.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

#define SERVER_PORT 12345 /* arbitrary, but client & server must agree */
#define BUF_SIZE 4096 /* block transfer size */
#define QUEUE_SIZE 10

int main(int argc, char *argv[])

ints, b, |, fd, sa, bytes, on = 1;
char buf[BUF_SIZE]; /* buffer for outgoing file */
struct sockaddr_in channel; /* hold’s IP address */

/* Build address structure to bind to socket. */
memset(&channel, 0, sizeof(channel)); /* zero channel */
channel.sin_family = AF_INET;

channel.sin_addr.s_addr = htonl(INADDR_ANY);
channel.sin_port = htons(SERVER_PORT);

/* Passive open. Wait for connection. */

s = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); /* create socket */
if (s < 0) fatal("socket failed");

setsockopt(s, SOL_SOCKET, SO_REUSEADDR, (char *) &on, sizeof(on));

b = bind(s, (struct sockaddr *) &channel, sizeof(channel));

if (b < 0) fatal("bind failed");

| = listen(s, QUEUE_SIZE); /* specify queue size */
if (I < 0) fatal("listen failed");

/* Socket is now set up and bound. Wait for connection and process it. */
while (1) {

sa = accepf(s, 0, 0); /* block for connection request */
if (sa < 0) fatal("accept failed");
read(sa, buf, BUF_SIZE); /* read file name from socket */
/* Get and return the file. */
fd = open(buf, O_RDONLY); /* open the file to be sent back */
if (fd < 0) fatal("open failed");
while (1) {
bytes = read(fd, buf, BUF_SIZE); /* read from file */
if (bytes <= 0) break; /* check for end of file */
write(sa, buf, bytes); /* write bytes to socket */
}
close(fd); /* close file */
close(sa); /* close connection */

Elements of Transport Protocols

« Addressing

« Connection Establishment
« Connection Release

* Flow Control and Buffering
« Multiplexing

» Crash Recovery

Transport Protocol

Router Router Subnet

\ /

@ @
\ Physical \

communication channel

Host

(@) (b)

(a) Environment of the data link layer.
(b) Environment of the transport layer.

Addressing

Host 1 Host 2
o Server 1 Server 2
Application TSAP 1208 | Application
process / layer
]
:\ Transport / \\
I “Transport layer [TSAP 1522\\ TSAP1836
- connection \
b4 *
] 1
:\ NSAP Network :\
i layer ' NSAP
i i
1 1
] 1
1 1
- Data link y
i layer ;
1 1
I 1
= |
i Physical :
' layer !
] 1
\ ;
\s ’I

TSAPs, NSAPs and transport connections.

Connection Establishment

Host 1 Host 2 Host 1 Host 2
ime-
of-day
Layer server
Process Process
Server Server
/7% 1\
. /
TSAP
&3 b oo SO 2 R by
_ J

(@) (b)

How a user process in host 1 establishes a connection
with a time-of-day server in host 2.

Connection Establishment (2)

. T ok .4
Forbidden |4 -]

%) message
é 120 — g
> 0
: & :

N\
S 80 €S :
2 70 R 3!
o ~—__ Restart after)
3 60 = crash with 70 ?','
n
Actual sequence
0 | 1 1 | | numbers used
0O 30 60 90 120 150 180

(@) (b)

(a) TPDUs may not enter the forbidden region.
(b) The resynchronization problem.

Connection Establishment (3)

Host 1 Host 2 Host 1 Host 2

Host 1 Host 2
| licat
R “ Old duplicate CR (Seq N
\ % Old duplm
_N
) R) b
=% - o%
QE) AR P‘G\(S PG\‘ ok &
= Gy e~ 5 o)
o6 ot AT4 (56
ACK - q = X,
b old dum
74 (s0q X REECT (ack U
SX Ac \ T
Ksy) y) (ACKQy)
(a) (b)

(c)

Three protocol scenarios for establishing a connection using a
three-way handshake. CR denotes CONNECTION REQUEST.
(a) Normal operation,

(b) Old CONNECTION REQUEST appearing out of nowhere.
(c) Duplicate CONNECTION REQUEST and duplicate ACK.

Connection Release

Host 1 Host 2
W’
ACK

Time
=
N

No data are
delivered after
a disconnect
request

Abrupt disconnection with loss of data.

Connection Release (2)

White army

The two-army problem.

Host 1

Send DR
+ start timer

Release
connection

Send ACK

Connection Release (3)

&}
%

—dok

(@)

Host 2

Send DR
+ start timer

Release
connection

Host 1

Send DR
+ start timer

Release
connection

Send ACK

\DRb

B

three-way handshake. (b) final ACK lost.

Host 2

Send DR
+ start timer

3 []
(Timeout)
release
connection

Four protocol scenarios for releasing a connection. (a) Normal case of a

Host 1

Send DR
+ start timer

(Timeout)
send DR
+ start timer

Release
connection

Send ACK

Connection Release (4)

\

e
=B
%

%

()

Host 2

Send DR &
start timer

Send DR &
start timer

Release
connection

Host 1

Send DR
+ star.t timer

(Timeout)
send DR
+ start timer

[]
(N Tinleouts)
release
connection

\DR>
e

Tk

(d)

Host 2

Send DR &
start timer

([
(Tim&out)
release
connection

(c) Response lost. (d) Response lost and subsequent DRs lost.

Flow Control and Buffering

- T— . a } TPDU 1

~ TPDU 2

} TPDU 3

(@) (b)
> TPDU 4

Unused
space

(©)

(a) Chained fixed-size buffers. (b) Chained variable-sized buffers.
(c) One large circular buffer per connection.

0 N O o b W N =

_ . A A 4
OO b WON = O ©

16

Flow Control and Buffering (2)

A

Message

< request 8 buffers>
<ack = 15, buf = 4>
<seq = 0, data = m0>
<seq =1, data =m1>
<seq = 2, data = m2>
<ack =1, buf = 3>
<seq = 3, data = m3>
<seq = 4, data = m4>
<seq = 2, data = m2>
<ack = 4, buf = 0>
<ack =4, buf=1>
<ack = 4, buf = 2>
<seq = 5, data = m5>
<seq = 6, data = m6>
<ack = 6, buf = 0>
<ack = 6, buf = 4>

Comments

A wants 8 buffers

B grants messages 0-3 only

A has 3 buffers left now

A has 2 buffers left now

Message lost but A thinks it has 1 left
B acknowledges 0 and 1, permits 2-4
A has 1 buffer left

A has 0 buffers left, and must stop

A times out and retransmits
Everything acknowledged, but A still blocked
A may now send 5

B found a new buffer somewhere

A has 1 buffer left

A is now blocked again

A is still blocked

Potential deadlock

Dynamic buffer allocation. The arrows show the direction of

transmission. An ellipsis (...) indicates a lost TPDU.

Multiplexing

Transport address

® ® o/

Network

4 L~ address
o/
3
2 Router lines
1
Y To router §

(a) Upward multiplexing. (b) Downward multiplexing.

Strategy used by

Crash Recovery

Strategy used by receiving host

First ACK, then write

First write, then ACK

A

Y

sending host AC(W) AWC C(AW) C(WA) W AC WC(A)
Always retransmit OK DUP OK OK DUP DUP
Never retransmit LOST OK LOST LOST OK OK
Retransmit in SO OK DUP LOST LOST DUP OK
Retransmit in S1 LOST OK OK OK OK DUP
OK = Protocol functions correctly

DUP = Protocol generates a duplicate message
LOST = Protocol loses a message

Different combinations of client and server strategy.

A Simple Transport Protocol

» The Example Service Primitives
» The Example Transport Entity
» The Example as a Finite State Machine

The Example Transport Entity

Network packet Meaning
CALL REQUEST Sent to establish a connection
CALL ACCEPTED Response to CALL REQUEST
CLEAR REQUEST Sent to release a connection
CLEAR CONFIRMATION | Response to CLEAR REQUEST
DATA Used to transport data
CREDIT Control packet for managing the window

The network layer packets used in our example.

The Example Transport Entity (2)

Each connection is in one of seven states:

Idle — Connection not established yet.

Waiting — CONNECT has been executed, CALL REQUEST sent.
Queued — A CALL REQUEST has arrived; no LISTEN yet.
Established — The connection has been established.

Sending — The user is waliting for permission to send a packet.
Receiving — A RECEIVE has been done.

DISCONNECTING — a DISCONNECT has been done locally.

N o Ok w0

The Example Transport Entity (3)

#define MAX_CONN 32 /* max number of simultaneous connections */
#define MAX_MSG_SIZE 8192 /* largest message in bytes */
#define MAX_PKT_SIZE 512 /* largest packet in bytes */

#define TIMEOUT 20
#define CRED 1
#define OK 0

#define ERR_FULL -1
#define ERR_REJECT -2
#define ERR_CLOSED -3
#define LOW_ERR -3

typedef int transport_address;
typedef enum {CALL_REQ,CALL_ACC,CLEAR_REQ,CLEAR_CONF,DATA_PKT,CREDIT} pkt_type;
typedef enum {IDLE,WAITING,QUEUED,ESTABLISHED,SENDING,RECEIVING,DISCONN} cstate;

/* Global variables. */

transport_address listen_address; /* local address being listened to */
int listen_conn; /* connection identifier for listen */
unsigned char data]MAX_PKT_SIZE]; /* scratch area for packet data */

struct conn {
transport_address local_address, remote_address;

cstate state; /* state of this connection */

unsigned char *user_buf_addr; /* pointer to receive buffer */

int byte_count; /* send/receive count */

int clr_req_received; /* set when CLEAR_REQ packet received */
int timer; /* used to time out CALL_REQ packets */
int credits; /* number of messages that may be sent */

} conn[MAX_CONN + 1]; /* slot 0 is not used */

The Example Transport Entity (4)

void sleep(void); /* prototypes */

void wakeup(void);

void to_net(int cid, int g, int m, pkt_type pt, unsigned char *p, int bytes);

void from_net(int *cid, int *q, int *m, pkt_type *pt, unsigned char *p, int *xbytes);

int listen(transport_address t)
{ /* User wants to listen for a connection. See if CALL_REQ has already arrived. */
int i, found = 0;

for (i = 1; i <= MAX_CONN; i++) /* search the table for CALL_REQ */
if (conn[i].state == QUEUED && conn[i].local address ==1) {
found =i;
break;
}
if (found == 0) {
/* No CALL_REQ is waiting. Go to sleep until arrival or timeout. */
listen_address =t; sleep(); i = listen_conn ;
}
conn[i].state = ESTABLISHED; /* connection is ESTABLISHED */

conn[i].timer = 0; /* timer is not used */

The Example Transport Entity (5)

listen_conn = 0; /* 0 is assumed to be an invalid address */
to_net(i, 0, 0, CALL_ACC, data, 0); /* tell net to accept connection */
return(i); /* return connection identifier */

}

int connect(transport_address |, transport_address r)

{ /* User wants to connect to a remote process; send CALL_REQ packet. */
int i;
struct conn *cptr;

data[0] =r; data[1] =1; /* CALL_REQ packet needs these */
i = MAX_CONN; /* search table backward */
while (conn[i].state != IDLE && i> 1) i=i —1;

if (conn([i].state == IDLE) {
/* Make a table entry that CALL_REQ has been sent. */
cptr = &conn[i;
cptr->local address = |; cptr->remote_address =r;
cptr->state = WAITING; cptr->clr_req_received = 0;
cptr->credits = 0; cptr->timer = 0;
to_net(i, 0, 0, CALL_REQ, data, 2);
sleep(); /* wait for CALL_ACC or CLEAR_REQ */
if (cptr->state == ESTABLISHED) return(i);
if (cptr->clr_req_received) {
/* Other side refused call. */
cptr->state = IDLE; /* back to IDLE state */
to net(i, 0, 0, CLEAR_CONF, data, 0);
return(ERR_REJECT);
}
} else return(ERR_FULL); /* reject CONNECT: no table space */
}

The Example Transport Entity (6)

int send(int cid, unsigned char bufptr(], int bytes)
{ /* User wants to send a message. */

int i, count, m;

struct conn *cptr = &connlcid];

/* Enter SENDING state. */
cptr->state = SENDING;
cptr->byte_count = 0; /* # bytes sent so far this message */
if (cptr->clr_req_received == 0 && cptr->credits == 0) sleep();
if (cptr->clr_req_received == 0) {
/* Credit available; split message into packets if need be. */
do {
if (bytes — cptr->byte_count > MAX_PKT_SIZE) {/* multipacket message */
count = MAX_PKT_SIZE; m =1; /* more packets later */
} else { /* single packet message */
count = bytes — cptr->byte_count; m =0; /* last pkt of this message */
}

for (i = 0; i < count; i++) data[i] = bufptr[cptr->byte_count + iJ;

to_net(cid, 0, m, DATA_PKT, data, count); /* send 1 packet */

cptr->byte_count = cptr->byte_count + count; /* increment bytes sent so far */
} while (cptr->byte_count < bytes); /* loop until whole message sent */

The Example Transport Entity (7)

cptr->credits — —; / * each message uses up one credit */
cptr->state = ESTABLISHED;
return(OK);
} else {
cptr->state = ESTABLISHED;
return(ERR_CLOSED); /* send failed: peer wants to disconnect */

}
}

int receive(int cid, unsigned char bufptr[], int *xbytes)
{ /* User is prepared to receive a message. */
struct conn *cptr = &conn[cid];

if (cptr->clr_req_received == 0) {
/* Connection still established; try to receive. */
cptr->state = RECEIVING;
cptr->user_buf_addr = bufptr;
cptr->byte_count = 0;
data[0] = CRED;

data[1] = 1;

to_net(cid, 1, 0, CREDIT, data, 2); /* send credit */
sleep(); /* block awaiting data */
*pytes = cptr->byte_count;

}
cptr->state = ESTABLISHED;

return(cptr->clr_req_received ? ERR_CLOSED : OK);
}

The Example Transport Entity (8)

int disconnect(int cid)
{ /* User wants to release a connection. */
struct conn *cptr = &conn[cid];

if (cptr->clr_req_received) { /* other side initiated termination */
cptr->state = IDLE; /* connection is now released */
to_net(cid, 0, 0, CLEAR_CONF, data, 0);

} else { /* we initiated termination */
cptr->state = DISCONN; /* not released until other side agrees */
to_net(cid, 0, 0, CLEAR_REQ, data, 0);

}

return(OK);

}

void packet_arrival(void)
{ /* A packet has arrived, get and process it. */
int cid; /* connection on which packet arrived */
int count, i, g, m;
pkt_type ptype; /* CALL_REQ, CALL_ACC, CLEAR_REQ, CLEAR_CONF, DATA_PKT, CREDIT =/
unsigned char data[]MAX_PKT_SIZE]; /* data portion of the incoming packet */
struct conn *cptr;

from_net(&cid, &q, &m, &ptype, data, &count); /* go get it */
cptr = &conn[cid];

The Example Transport Entity (9)

switch (ptype) {
case CALL_REQ: /* remote user wants to establish connection */
cptr->local_address = data[0]; cptr->remote_address = data[1];
if (cptr->local_address == listen_address) {
listen_conn = cid; cptr->state = ESTABLISHED; wakeup();
} else {
cptr->state = QUEUED; cptr->timer = TIMEOUT;
}

cptr->clr_req_received = 0; cptr->credits = 0;

break;
case CALL_ACC: /* remote user has accepted our CALL_REQ */
cptr->state = ESTABLISHED;
wakeup();
break;
case CLEAR_REQ: /* remote user wants to disconnect or reject call */

cptr->clr_req_received = 1;
if (cptr->state == DISCONN) cptr->state = IDLE; /* clear collision */
if (cptr->state == WAITING |l cptr->state == RECEIVING || cptr->state == SENDING) wakeup();

break;

case CLEAR_CONF: /* remote user agrees to disconnect */
cptr->state = IDLE;
break;

case CREDIT: /* remote user is waiting for data */

cptr->credits += data[1];
if (cptr->state == SENDING) wakeup();
break;

case DATA_PKT: /* remote user has sent data */
for (i = 0; i < count; i++) cptr->user_buf_addr[cptr->byte_count + i] = data[i];
cptr->byte_count += count;
if (m == 0) wakeup();

The Example Transport Entity (10)

}

void clock(void)
{ /* The clock has ticked, check for timeouts of queued connect requests. */
inti;
struct conn *cptr;
for (i = 1; i <= MAX_CONN; i++) {
cptr = &conn[i;

if (cptr->timer > 0) { /* timer was running */
cptr->timer— —;
if (cptr->timer == 0) { /* timer has now expired */

cptr->state = IDLE;
to_net(i, 0, 0, CLEAR_REQ, data, 0);

The Example as a Finite State Machine

The example protocol as a
finite state machine. Each
entry has an optional
predicate, an optional action,
and the new state. The tilde
Indicates that no major action
Is taken. An overbar above a
predicate indicate the negation
of the predicate. Blank entries
correspond to impossible or
Invalid events.

Primitives

Incoming packets

Clock

LISTEN

CONNECT

< DISCONNECT

SEND

RECEIVE

Call_req

Call_acc

Clear_req

Clear_conf

DataPkt

Credit

9
{ Timeout

State

Dis-
Idle Waiting Queued Established Sending Receiving connecting
P1: ~/Idle
P2: A1/Estab ~[Estab
P2: A2/ldle
P1: ~/ldle
P1: A3/Wait
P4: AS/Idle
P4: A6/Disc
P5: A7/Estab
P5: A8/Send
A9/Receiving
P3: A1/Estab
P3: A4/Queu'd
~/Estab
~/ldle A10/Estab A10/Estab A10/Estab ~/ldle
~/ldle
A12/Estab
A11/Estab A7/Estab
~/ldie
Predicates Actions

P1: Connection table full
P2: Call_req pending
P3: LISTEN pending
P4: Clear_req pending
P5: Credit available

A1: Send Call_acc
A2: Wait for Call_req A8: Wait for credit
A3: Send Call_req

A4: Start timer

A5: Send Clear_conf A11: Record credit

A7: Send message

A9: Send credit

A10: Set ClIr_req_received flag

A6: Send Clear_req A12: Accept message

The Example as a Finite State Machine (2)

(N\
CONNECT TIMEOUT
IDLE
(CLEAF{ REQ — CALL REQ]
lo 5
o 9
w|c =z
WAITING B4 Z QUEUED
Sl 8
© »
\ o
CALL ACC LISTEN
ESTAB-
CREDIT, LISHED RECEIVE
(CLEAR REQ \v
|_
o
SENDING f= SENR J% L DATA, RECEIVING
B - CLEAR REQ
)
2]
[m)]
Y
DISCON-
NECTING

k CLEAR REQ, CLEAR CONF

The example protocol in graphical form. Transitions that leave
the connection state unchanged have been omitted for simplicity.

The Internet Transport Protocols: UDP

* Introduction to UDP
 Remote Procedure Call
* The Real-Time Transport Protocol

-

Introduction to UDP

32 Bits

o
L

Source port

Destination port

UDP length

UDP checksum

The UDP header.

Remote Procedure Call

Client CPU

——

1

2

Client
stub

Server CPU

Operating system Y

Server,
stub

4

I
A [server

A Operating system

_J

N

Network

Steps in making a remote procedure call. The stubs are shaded.

The Real-Time Transport Protocol

Ethernet IP UDP RTP

User | |Multimedia application header header header header
space | | rTP ;
Socket interface RTP payload
UDP
OS
Kernel IP <—— UDP payload ——
Ethernet - IP payload -
- Ethernet payload >

(@) (b)

(a) The position of RTP in the protocol stack. (b) Packet nesting.

The Real-Time Transport Protocol (2)

- 32 bits >
N O T) I

Ver. |P|X CC M Payload type Sequence number

Timestamp

Synchronization source identifier

The RTP header.

The Internet Transport Protocols: TCP

o Introductlon to TCP
e The TCP Service Model

. ne TCP Protocol
 The TCP Segment Header

« TCP Connection Establishment

« TCP Connection Release

« TCP Connection Management Modeling
« TCP Transmission Policy

- TCP Congestion Control

« TCP Timer Management

* Wireless TCP and UDP

- Transactional TCP

The TCP Service Model

Port Protocol Use
21 FTP File transfer
23 Telnet Remote login
25 SMTP E-mail
69 TETP Trivial File Transfer Protocol
79 Finger Lookup info about a user
80 HTTP World Wide Web
110 POP-3 Remote e-mail access
119 NNTP USENET news

Some assigned ports.

IP header TCP header
\ /

A

(a) Four 512-byte segments sent as separate IP datagrams.

The TCP Service Model (2)

ONK

B

A B CD

(b) The 2048 bytes of data delivered to the application in a single

READ CALL.

The TCP Segment Header

- 32 Bits >

| l I | | | | | | |] | l | l I | | | | | | l | |]

Source port Destination port

Sequence number
Acknowledgement number

TCP UlA|P|R|S|F
header RIC|S|S|Y]|I Window size
length G|K|H|[T|N|N

Checksum Urgent pointer

((
)

Options (0 or more 32-bit words)

((
)

((
))

Data (optional)

((
)

TCP Header.

The TCP Segment Header (2)

- 32 Bits .

Source address

Destination address

00000000 Protocol = 6 TCP segment length

The pseudoheader included in the TCP checksum.

TCP Connection Establishment

Host 1 Host 2 Host 1 Host 2

SYN SEQ =x

_x+1
gYN (SEQ =Y e

<« Time

(

SEQ=x+1,ACK=y+1)

(@) (b)

(a) TCP connection establishment in the normal case.
(b) Call collision.

TCP Connection Management Modeling

State Description
CLOSED No connection is active or pending
LISTEN The server is waiting for an incoming call
SYN RCVD A connection request has arrived; wait for ACK
SYN SENT The application has started to open a connection
ESTABLISHED | The normal data transfer state
FIN WAIT 1 The application has said it is finished
FIN WAIT 2 The other side has agreed to release
TIMED WAIT Wait for all packets to die off
CLOSING Both sides have tried to close simultaneously
CLOSE WAIT The other side has initiated a release
LAST ACK Wait for all packets to die off

The states used in the TCP connection management finite state machine.

TCP Connection Management Modeling (2)

i (Star) CONNECT/SYN (Step 1 of the 3-way handshake)

TCP connection CLOSED [)
management finite state oo a4 | CrosE
machine. The heavy solid (o2 e Svayanssae) | T
line is the normal path for a o SS’/SC) - (S’Sp) o
client. The heavy dashed : S
line is the normal path for a e 20 L esmeuioneo [Stescinee)
server. The light lines are cesem N J o
unusual events. Each | —T— T e
transition is labeled by the = e —— 1 2y
event causing itand the | T | — L T
action resulting from it, i oo
separated by a slash. j e LEE |

G

CLOSED |wmmmmmmev o S !

(Go back to start)

TCP Transmission Policy

Sender Receiver Receiver's
Application buffer
dqes a2k ——— 0 4K
write
Empty
2K
ACK = 2048 WIN = 2048
Application
does a 2K —
write
Full
Sender is J Application
blocked reads 2K
2K
Sender may
send up to 2K —»
LK [Se5
Q= 4055 1K| | 2k

Window management in TCP.

TCP Transmission Policy (2)
(p

Receiver's buffer is full

l

Application reads 1 byte

-<—— Room for one more byte

l

-<—— Header Window update segment sent

Header > New byte arrives

1 Byte

Receiver's buffer is full

N y

Silly window syndrome.

TCP Congestion Control

\ Transmission
rate adjustment

Transmission

network Internal

, congestion

'

Small-capacity Large-capacity
receiver ~._ @ receiver

(@) (b)

(a) A fast network feeding a low capacity receiver.
(b) A slow network feeding a high-capacity receiver.

Congestion window (kilobytes)

TCP Congestion Control (2)

Timeout

e

40

56 - Threshold

32 b T f{___

28 —

Threshold

/

24 |

20

16 —

12 —

o ¢ ¢ &+
o 2 4 6 8 10 12 14 16 18 20 22 24

Transmission number

An example of the Internet congestion algorithm.

TCP Timer Management

0.3 T 08 — T4 T,
|

o
(V)
|
o
N
I

Probability
Probability

o
—
|
o
Y
I

5 1|O)|L| | | Omi|

0 20 30 40 50 0 10 20 30 40 50
Round-trip time (msec) Round-trip time (msec)

(@) (b)

(a) Probability density of ACK arrival times in the data link layer.
(b) Probability density of ACK arrival times for TCP.

Wireless TCP and UDP

Sender TCP #1 Base
station

TN

host
Router Antenna

Splitting a TCP connection into two connections.

Client

1

Time

Transitional TCP

\
SYN—
N, ACK(SYN)/

4————"“8\(

- ACK(request + FIN ™

\ACK(FIN)\»

Server

(@)

Client

1

Time

[T —
SYN, request’ F’N\>

sy, ACK(FIN), reply, FIN T

- ACK(FIN—

(a) RPC using normal TPC.
(b) RPC using T/TCP.

Server

Performance Issues

Performance Problems in Computer Networks
Network Performance Measurement

System Design for Better Performance

Fast TPDU Processing

Protocols for Gigabit Networks

Performance Problems in Computer Networks

The state of transmitting one megabit from San Diego to Boston
(a) Att=0, (b) After 500 usec, (c) After 20 msec, (d) after 40 msec.

Network Performance Measurement

The basic loop for improving network performance.

1. Measure relevant network parameters, performance.
2. Try to understand what is going on.

3. Change one parameter.

System Design for Better Performance

Rules:

CPU speed is more important than network speed.
Reduce packet count to reduce software overhead.
Minimize context switches.

Minimize copying.

You can buy more bandwidth but not lower delay.
Avoiding congestion is better than recovering from it.
Avoid timeouts.

N o Ok b

System Design for Better Performance (2)

.
-
-
-
-
-

-
-
-
-
-
-

.........

Response time

..........
.-

oo

Response as a function of load.

System Design for Better Performance (3)

User process running at the Network Receiving
time of the packet arrival manager process

‘ A\ \
() () () > User space
¢ <

____________________________ > Kernel space

Four context switches to handle one packet
with a user-space network manager.

Fast TPDU Processing

Sending Receiving process —__
process TPDU passed to the receiving process\ ‘

~— Trap into the kernel to send TPDU |)<J\::>—\:
1+
Test Test > —[] ’Tj
. L
\

A

<o

N

Network

The fast path from sender to receiver is shown with a heavy line.
The processing steps on this path are shaded.

Fast TPDU Processing (2)

Source port Destination port VER. | IHL| TOS Total length
Sequence number Identification Fragment offset
Acknowledgement number TTL Protocol Header checksum
Len |Unused Window size Source address
Checksum Urgent pointer Destination address

(@) (b)

(a) TCP header. (b) IP header. In both cases, the shaded fields are taken
from the prototype without change.

Fast TPDU Processing (3)

Slot

o
|

— Pointer to list of timers for T + 12

<— Currenttime, T

OO0 |O|O

—+— Pointer to list of timers for T + 3

0O NO Ok WN =

o

-
o

-
\}

—
—d
oO|Oo|O0|O|O| O

-y
w

—_
AN
|

— Pointer to list of timers for T + 10

—
(63
o

A timing wheel.

Protocols for Gigabit Networks

1000 sec —
100 sec —
(O] |
E 10 sec
o
= 1sec —
C
©
© 100 msec —
ik ® © o—
10 msec (—
1 msec —
I | I | I I I I I |

103 104 10° 108 107 108 109 1010 10"" 1012
Data rate (bps)

Time to transfer and acknowledge a 1-megabit file over a 4000-km line.

